

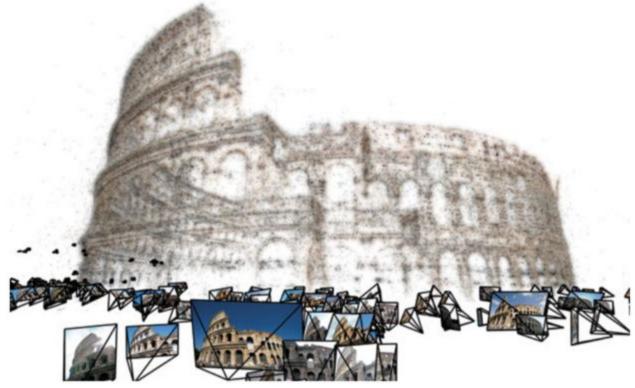
Deep Hough Voting 3D Object Detection in Point Clouds

Or Litany

FAIR / Stanford

In collaboration with: Charles Qi, Kaiming He and Leonidas Guibas

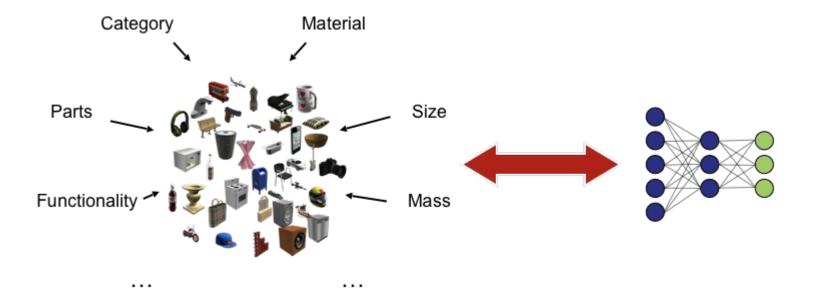
3D is a natural representation of the world



Agarwal et. al., ICCV'09²

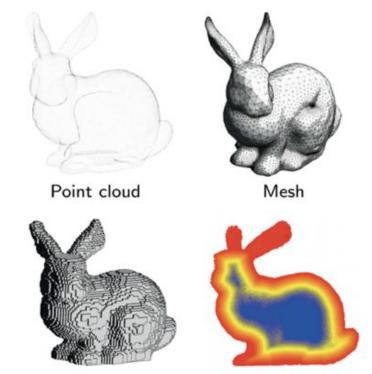
3D consumer market

Data driven tools for 3D



3D representations

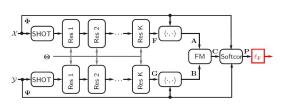
Array of pixels

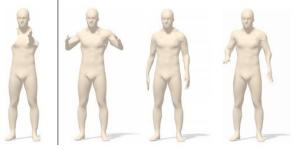


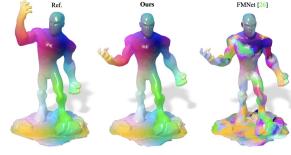
Voxels

Level set

Learning on graphs and manifolds (shameless plug)







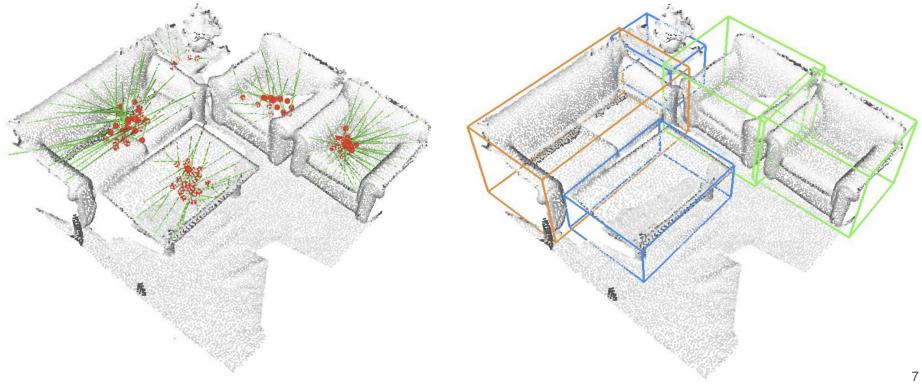
FMNet, ICCV'17

Shape completion, CVPR'18

self-supervised, CVPR'19

What if the graph (connectivity) is unknown?

Deep Hough Voting: 3D Object Detection in Point Clouds



Generally: To localize and recognize objects in a 3D scene.

Generally: To localize and recognize objects in a 3D scene.

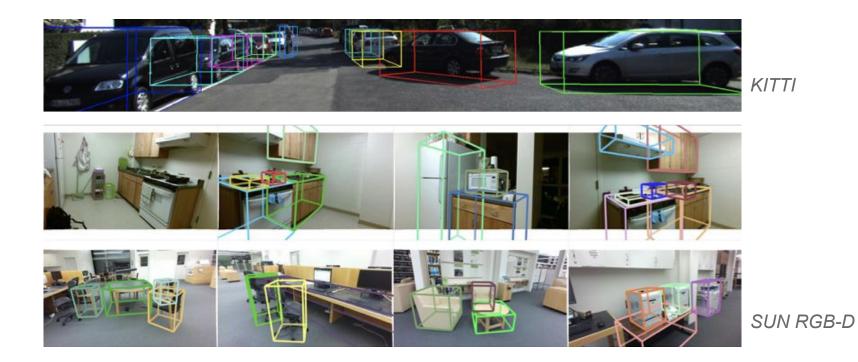
<u>Specifically in literature:</u> Estimate amodal, oriented 3D bounding boxes and semantic classes of objects from 3D point clouds or RGB-D data.

<u>Generally</u>: To localize and recognize objects in a 3D scene.

Specifically in literature: Estimate amodal, oriented 3D bounding boxes and semantic classes of objects from 3D point clouds or RGB-D data.

Applications:

- Augmented reality.
- Robotics.
- Autonomous driving.



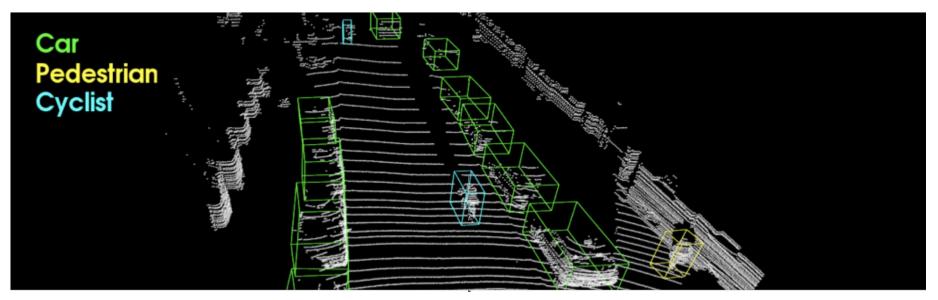
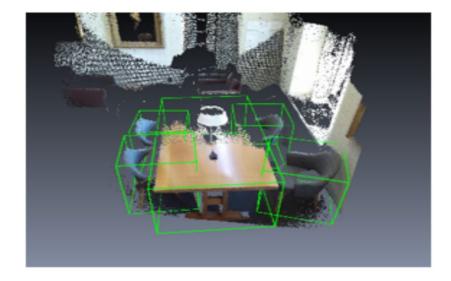


Figure by Yin et al. (VoxelNet)



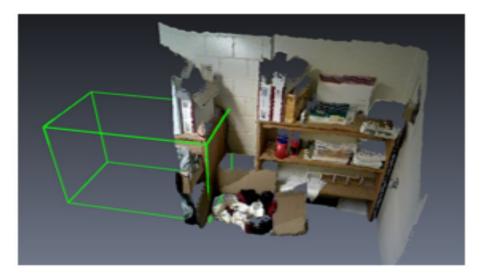
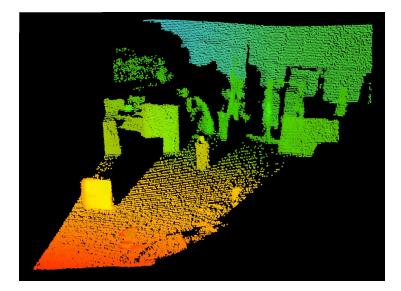


Figure by Lahoud et al. (2D-driven 3D object detection)

3D Vs. 2D Object Detection

3D input: point clouds from Lidar, RGB-D, reconstructed meshes.

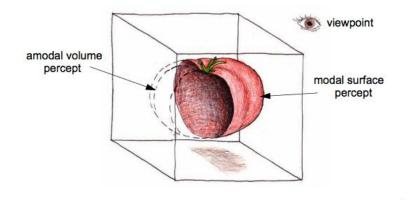


- + Accurate 3D geometry (depth and scale)
- + Robust to illumination
- Sparse and irregular (doesn't fit with CNNs).
- Centroid can be far from surface points.

3D Vs. 2D Object Detection

3D input: point clouds from Lidar, RGB-D, reconstructed meshes.

3D output: <u>Amodal</u> 3D oriented bounding boxes with semantic classes



3D box parameterization: c_x, c_y, c_z h, w, l $heta, \phi, \psi$

Usually we only consider 1D rotation around the up-axis.

Evaluation metric

Average Precision (AP) with a 3D Intersection over Union (IoU) threshold.

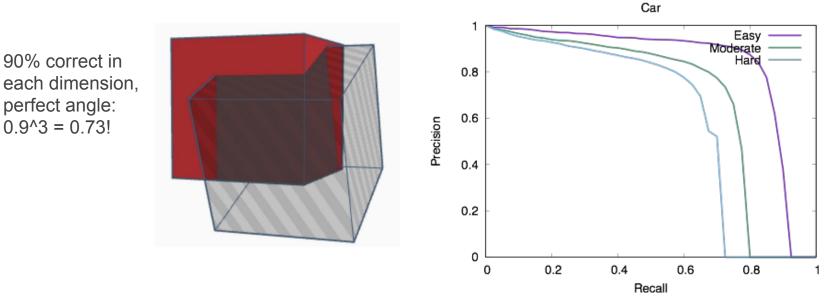


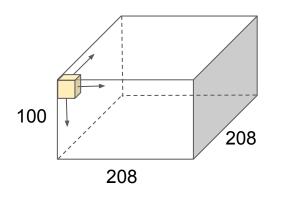
Figure from the SUMO report.

Key research problems

- **3D object proposal** (challenges: large search space, varying sizes and orientations)
- How to use <u>image</u> (high resolution, rich semantics, 2D geometry) and <u>3D</u> (low resolution, accurate 3D geometry)
- How to represent "objects": bounding boxes (2D,3D,oriented,amodal), instance masks, others (convex hulls,voxels,meshes,primitives,...)

3D object proposal: Current methods' limitations

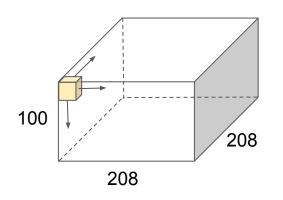
3D CNN detector

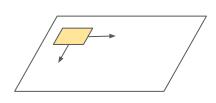


- High computation cost.
- Search in empty space (no use of <u>sparsity</u> in point clouds).

3D object proposal: Current methods' limitations

3D CNN detector





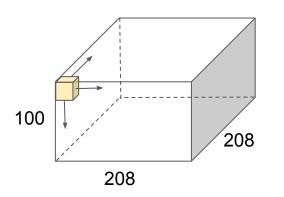
Bird's eye view

detector

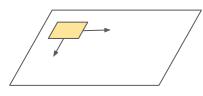
- High computation cost.
- Search in empty space (no use of <u>sparsity</u> in point clouds).
- Restricted to certain types of scenes (e.g. driving).
- Essentially a 2D detector.

3D object proposal: Current methods' limitations

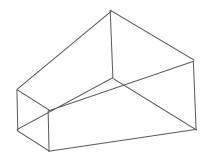
3D CNN detector



Bird's eye view detector



Frustum-based detector



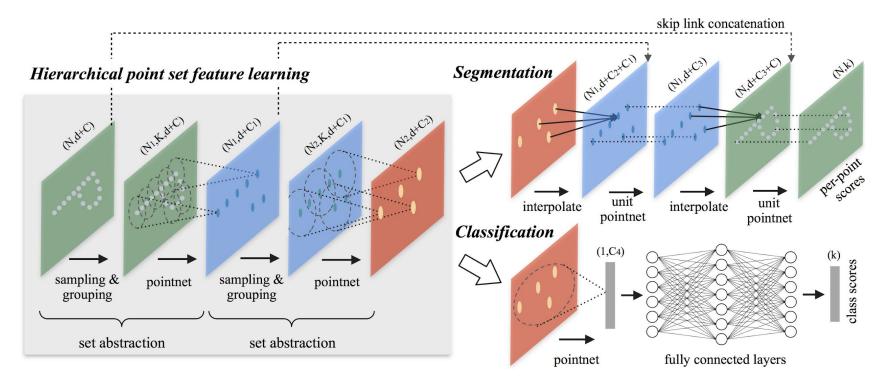
- High computation cost.
- Search in empty space (no use of <u>sparsity</u> in point clouds).
- Restricted to certain types of scenes (e.g. driving).
- Essentially a 2D detector.

• Hard dependence on 2D detectors.

3D object proposal: What we want

- Generic: no assumption on canonical viewpoint as in bird's eye view detectors.
- **3D-based**: no hard dependence on 2D images as in frustum-based detectors.
- Efficient: no brute-force search in the entire 3D space as in 3D CNNs.
 Leverage the sparsity in point clouds.

Simple point cloud based solution: Direct prediction

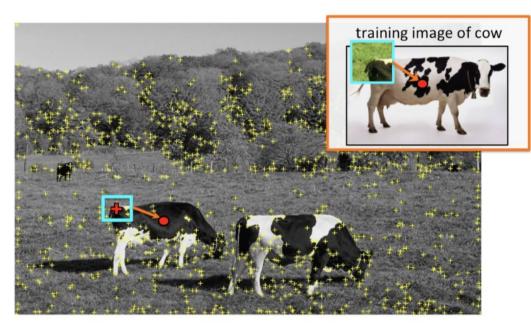


PointNet++, Qi et. al. 22

Simple point cloud based solution: Direct prediction

- Predict directly from existing points
- **<u>Challenge</u>**: Existing points can be very far from object centers.

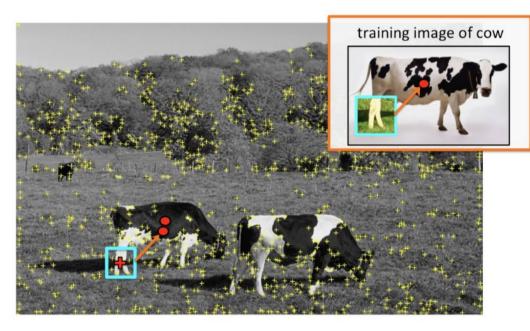
3D object proposal: A return of hough voting!



vote for center of object

From U. Toronto CSC420

- Select interest points
- Match patch around each interest point to a training patch (codebook)
- Vote for object center given that training instance



vote for center of object

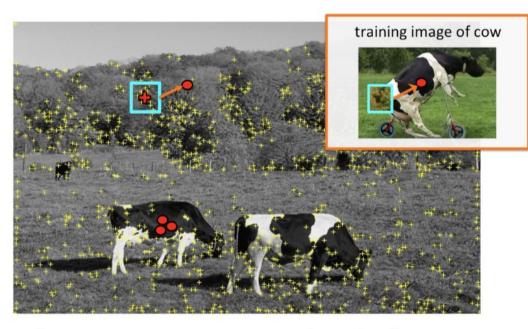
From U. Toronto CSC420

- Select interest points
- Match patch around each interest point to a training patch (codebook)
- Vote for object center given that training instance

vote for center of object

From U. Toronto CSC420

- Select interest points
- Match patch around each interest point to a training patch (codebook)
- Vote for object center given that training instance

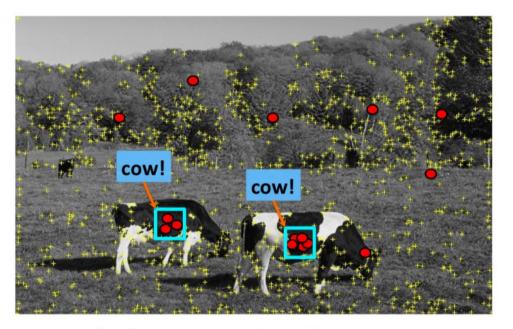


of course some wrong votes are bound to happen...

Hough voting pipeline (in 2D):

- Select interest points
- Match patch around each interest point to a training patch (codebook)
- Vote for object center given that training instance

From U. Toronto CSC420

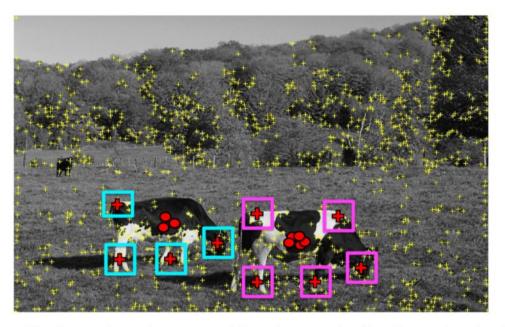


But that's ok. We want only **peaks** in voting space.

Hough voting pipeline (in 2D):

- Select interest points
- Match patch around each interest point to a training patch (codebook)
- Vote for object center given that training instance
- Votes clustering to find peaks

From U. Toronto CSC420

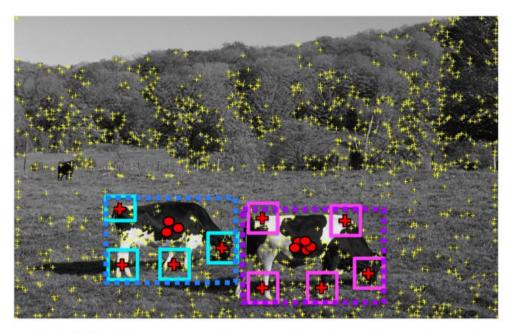


Find patches that voted for the peaks (back-projection).

Hough voting pipeline (in 2D):

- Select interest points
- Match patch around each interest point to a training patch (codebook)
- Vote for object center given that training instance
- Votes clustering to find peaks
- Find patches that voted for the peaks back-projection

From U. Toronto CSC420

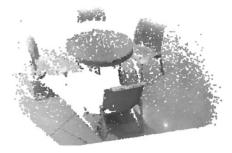


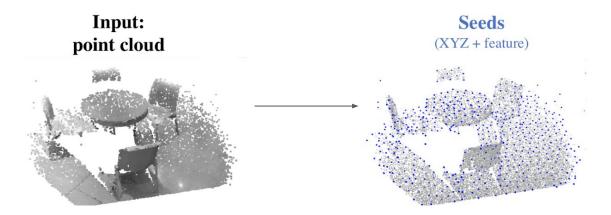
Find full objects based on the back-projected patches.

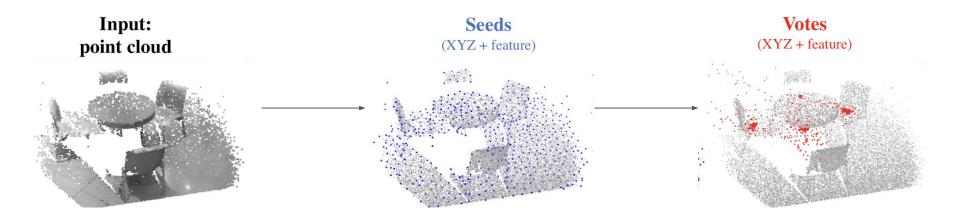
- Select interest points
- Match patch around each interest point to a training patch (codebook)
- Vote for object center given that training instance
- Votes clustering to find peaks
- Find patches that voted for the peaks back-projection
- Find full objects based on back-projected patches

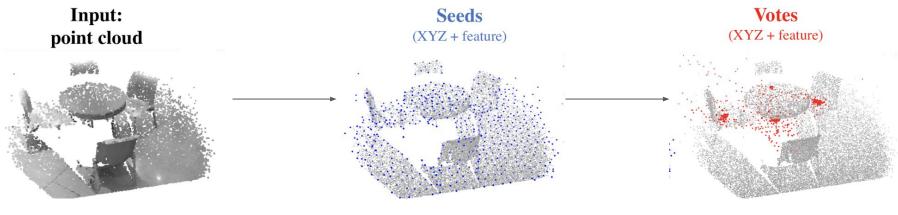
- Suitable for sparse data: computation is only on "interest" points
- + Long-range and non-uniform context aggregation
- Not end-to-end optimizable

Input: point cloud

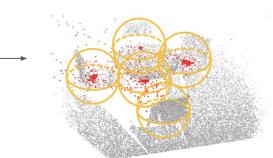




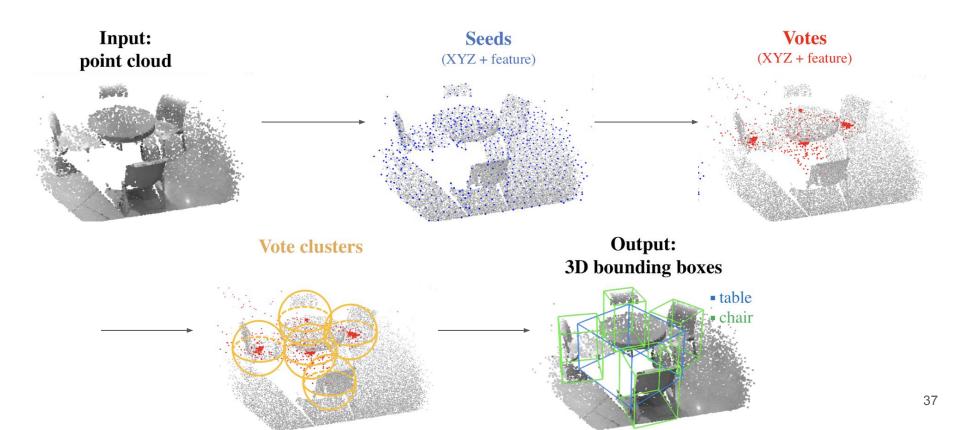


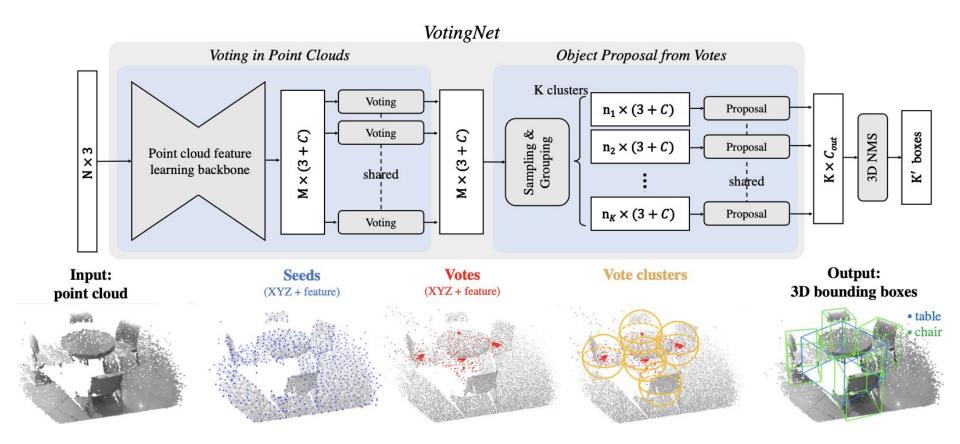


Vote clusters



Deep Hough voting:

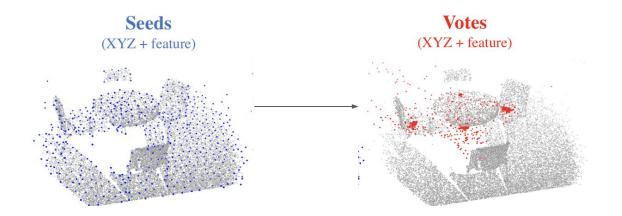




 $L_{\text{VoteNet}} = L_{\text{vote-reg}} + \lambda_1 L_{\text{obj-cls}} + \lambda_2 L_{\text{box}} + \lambda_3 L_{\text{sem-cls}}$

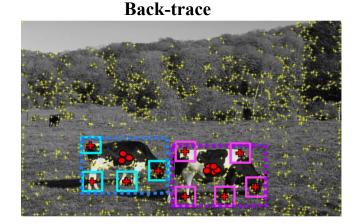
Deep Hough voting:

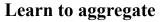
- Votes are "virtual points": same structure, better location

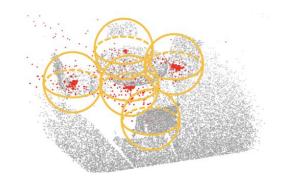


Deep Hough voting:

- Votes are "virtual points": same structure, better location
- Aggregation instead of back-tracing:
 - Learn to filter
 - Predict more than just location: pose, class, etc.
 - Amodal proposals







Results

SUN RGB-D

Single RGB-D images Eval on 10 classes. 5k/5k train/test. amodal

ScanNet

Reconstructed scenes. Eval on 18 classes. 1.2k/302 train/val Not amodal, no pose.

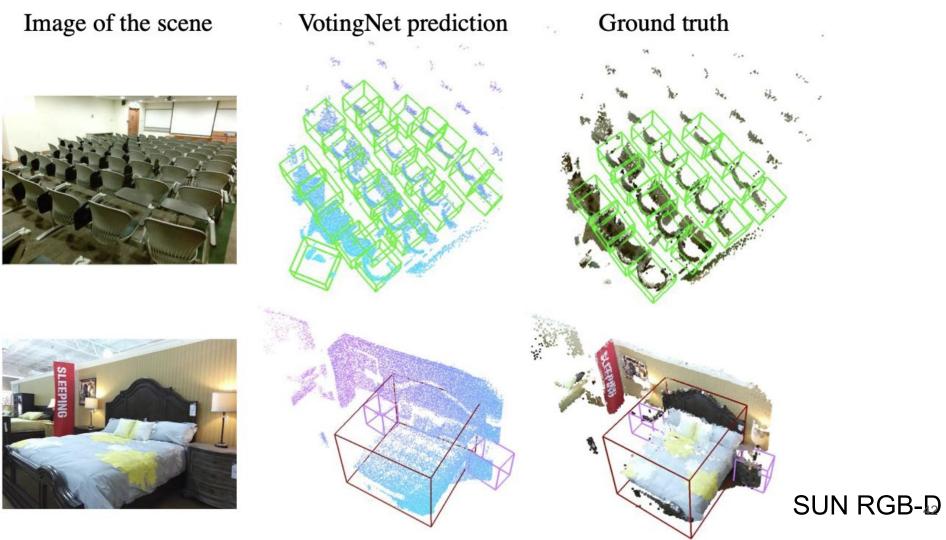
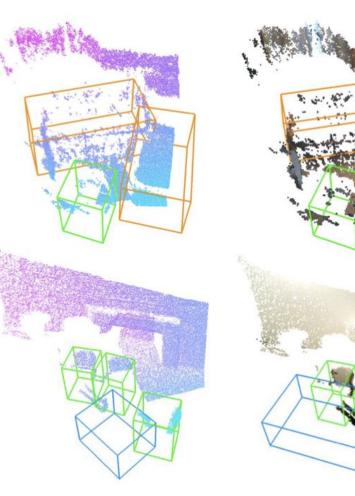


Image of the scene

VotingNet prediction

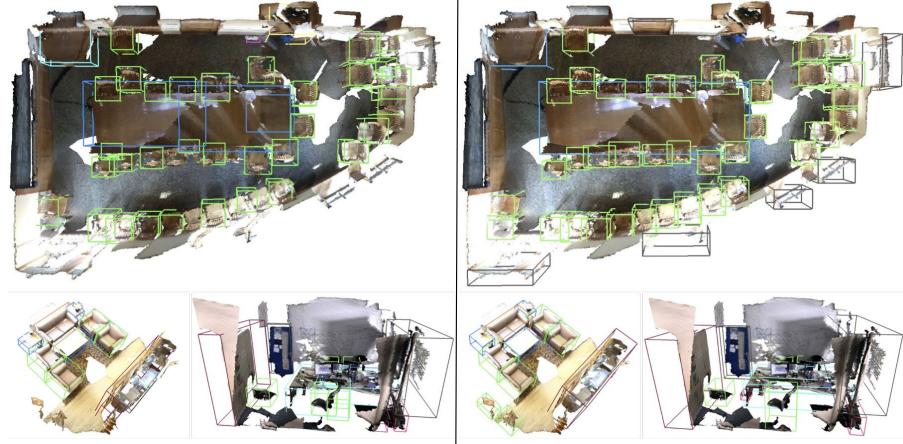
Ground truth



SUN RGB-D

VotingNet Prediction

Ground truth



ScanNet

SUN RGB-D

	Input	bathtub	bed	bookshelf	chair	desk	dresser	nightstand	sofa	table	toilet	mAP
DSS [37]	Geo + RGB	44.2	78.8	11.9	61.2	20.5	6.4	15.4	53.5	50.3	78.9	42.1
COG [33]	Geo + RGB	58.3	63.7	31.8	62.2	45.2	15.5	27.4	51.0	51.3	70.1	47.6
2D-driven [17]	Geo + RGB	43.5	64.5	31.4	48.3	27.9	25.9	41.9	50.4	37.0	80.4	45.1
F-PointNet [30]	Geo + RGB	43.3	81.1	33.3	64.2	24.7	32.0	58.1	61.1	51.1	90.9	54.0
VotingNet (ours)	Geo only	74.4	83.0	28.8	75.3	22.0	29.8	62.2	64.0	47.3	90.1	57.7

		Input	mAP@0.25	mAP@0.5
	DSS [37]	Geo + RGB	15.2	6.8
	MRCNN 2D-3D [10]	Geo + RGB	17.3	10.5
	F-PointNet [30]	Geo + RGB	19.8	10.8
t	GSPN [47]	Geo + RGB	30.6	17.7
-	3D-SIS [11]	Geo + 1 view	35.09	18.66
	3D-SIS [11]	Geo + 3 views	36.64	19.04
	3D-SIS [11]	Geo + 5 views	40.22	22.53
	3D-SIS [11]	Geo only	25.36	14.60
	VotingNet (ours)	Geo only	46.75	24.65

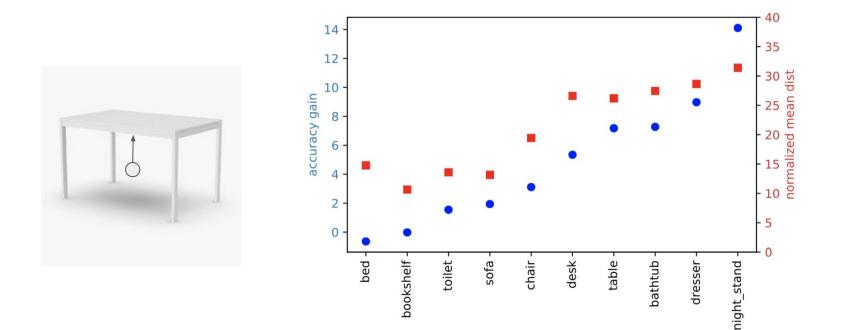
To vote or not to vote?

BoxNet (no voting)

VotingNet

Method	3D	mAP@0.25			
	representation	SUN RGB-D	ScanNet		
DSS [37]	Volumetric	42.1	15.2		
3D-SIS [11]	Volumetric	-	25.4		
BoxNet (ours)	Point clouds	53.0	39.6		
VotingNet (ours)	Point clouds	57.7	46.8		

When does voting helps the most?

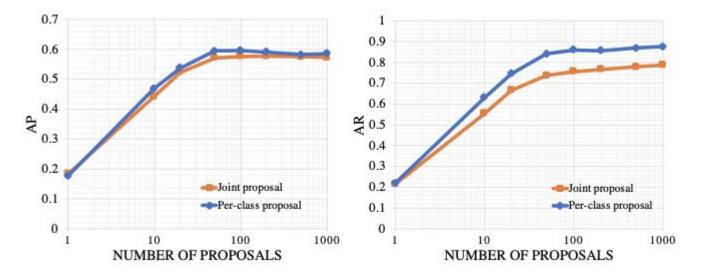


Aggregation is key



Aggregation method	mAP
Feature avg.	47.2
Feature max	47.8
Feature RBF avg.	49.0
Pointnet (avg)	56.5
Pointnet (max)	57.7

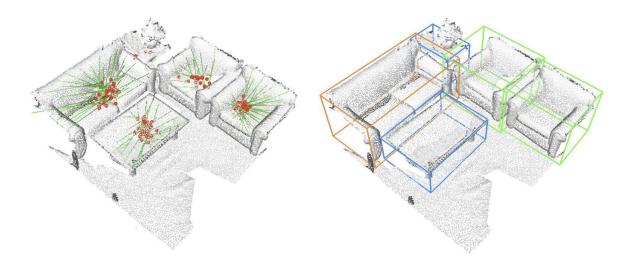
Proposal quality and runtimes



Method	Model size	SUN RGB-D	ScanNetV2
F-PointNet [30] 3D-SIS [11]	47.0MB 19.7MB	0.09s	- 2.85s
VotingNet (ours)	11.2MB	0.10s	0.14s

Summary

- Hough voting is back
 - Effective 3D object detection in point clouds with state-of-the-art performance on real 3D scans



Summary

- Hough voting is back
 - Effective 3D object detection in point clouds with state-of-the-art performance on real 3D scans
 - Improved context aggregation: low dimensional attention, online graph construction

- Future directions:
 - Adding color images (semantics and geometry cues)
 - Downstream tasks: extending the system to semantic / instance segmentation
 - Other use-cases suitable for voting

Thanks! orlitany.github.io